() First two small observations, on the Killing Form B.
B is inversant under
$$A \in Aut(g)$$
.
 $A \in Aut(g)$ iff $A([x, y]) = [Ax, Ay]$
 $\iff A \cdot ad_x = ad_{Au} \cdot A \iff A \cdot ad_x A^{-1} = ud_{kx}$.
Hence $B(Ax, Ay) = tr(ad_{Ax} \cdot ad_{Ay})$
 $= tr(A ad_x A^{-1} \cdot A \cdot d_y \cdot A^{+1})$
 $= tr(A ad_x A^{-1} \cdot A \cdot d_y \cdot A^{+1})$
 $= f(x, y)$.
This implies B is inversat under $a \in Arr(g)$
 $(a \in Dar(g) \iff a([x, y]) = [-x, y] + [x, sy])$
 X since $Der(g) = Lie(Aut(g))$.
Corollary, $B(x, y)$, the killing form is inversant under ad_g
Namely $B(ad_gx, y) + B(x, cd_yy) = 0$
We used the killing form B is inversant under ad_g in the last lecture on the structure of semi-simple Lie algebras.
(3) Theorem: (i) g is a compact Lie algebra, namely $g = Lie(G)$
for a compact Lie group

then
$$q = 3(q) \oplus q'$$
 $g' = [g, 5]$
& g' is semi-simple.
(ii) If q is a simple Lie algebra, then q is compart
 $(\Rightarrow B < 0)$

$$\begin{array}{l} \langle \Rightarrow \\ \langle [x, y], 3 \rangle = \circ \\ \langle \Rightarrow \\ \rangle \\ \langle x \in [g^{1}]^{\perp} \\ \Rightarrow \\ \gamma \\ = \\ 3 \end{array} \begin{array}{l} \langle x \in [g^{1}]^{\perp} \\ \langle \Rightarrow \\ \rangle \\ \langle \Rightarrow \\ \rangle \\ \langle x \in [g^{1}]^{\perp} \\ \langle \Rightarrow \\ \rangle \\ \langle x \in [g^{1}]^{\perp} \\ \langle \Rightarrow \\ \rangle \\ \langle x \in [g^{1}]^{\perp} \\ \langle \Rightarrow \\ \rangle \\ \langle x \in [g^{1}]^{\perp} \\ \langle \Rightarrow \\ \rangle \\ \langle x \in [g^{1}]^{\perp} \\ \langle \Rightarrow \\ \rangle \\ \langle x \in [g^{1}]^{\perp} \\ \langle x \in [g^{1$$

Since if $x \in g' \Longrightarrow$, $d_{x^{\pm}} \ni B(x, x) < 0 \Longrightarrow g'$ is behavior simple.

For the other direction. If is simple
$$\Rightarrow$$
 Act(g)/Int(g) is
discrete. But on Act(g), $B(0 \Rightarrow -B \text{ is an Act(g)})$
inversiont, namely $B(Ax, Ay) = B(x, y)$.
 $\Rightarrow A \in Aut(g)$ is $\in O(g)$. (with respect to $-B$).
 $\Rightarrow Aut(g) \in O(g)$.

Aut(ζ) clearly is closed since A([x, y]) = [Ax, Ay] is a close condition \Rightarrow Aut(ζ) is compare \Rightarrow Aut(ζ)/Iut(ζ) must be finite.

$$\Rightarrow I_{it}(g) \stackrel{is}{\leftarrow} \stackrel{inpact}{\Rightarrow} \stackrel{int}{\leftarrow} \stackrel{int}{\leq} \stackrel{int}{\leftarrow} \stackrel{int}{\leq} \stackrel{int}{\leftarrow} \stackrel{int}{\leq} \stackrel{int}{\leftarrow} \stackrel{int}{\leq} \stackrel{int}{\leftarrow} \stackrel{int}{\leq} \stackrel{int}{\leftarrow} \stackrel{int}{\leftarrow} \stackrel{int}{\leq} \stackrel{int}{\leftarrow} \stackrel{in}{\leftarrow} \stackrel{in}{\leftarrow}$$